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Abstract
Extracellular vesicles (EVs) are a heterogenous group of nanosized, membrane-
bound particles which are released by most cell types. They are known to play an 
essential role in cellular communication by way of their varied cargo which 
includes selectively enriched proteins, lipids, and nucleic acids. In the last two 
decades, wide-ranging evidence has established the involvement of EVs in the 
regulation of immunity, with EVs released by immune and non-immune cells 
shown to be capable of mediating immune stimulation or suppression and to 
drive inflammatory, autoimmune, and infectious disease pathology. More 
recently, studies have demonstrated the involvement of allograft-derived EVs in 
alloimmune responses following transplantation, with EVs shown to be capable of 
eliciting allograft rejection as well as promoting tolerance. These insights are 
necessitating the reassessment of standard paradigms of T cell alloimmunity. In 
this article, we explore the latest understanding of the impact of EVs on 
alloresponses following transplantation and we highlight the recent technological 
advances which have enabled the study of EVs in clinical transplantation. 
Furthermore, we discuss the rapid progress afoot in the development of EVs as 
novel therapeutic vehicles in clinical transplantation with particular focus on liver 
transplantation.
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Core Tip: Extracellular vesicles (EVs) are key contributors to T cell alloimmunity 
through the transfer of major histocompatibility alloantigens to host antigen presenting 
cells (APCs) thereby initiating alloresponses and acute rejection. Strong circumstantial 
evidence suggests that under certain conditions EV-mediated cross-dressing of 
recipient APCs can also tolerance responses and allay allograft rejection–for instance 
in the context of liver transplantation. We anticipate improved mechanistic 
understanding of these processes will facilitate design of novel EV therapies in 
transplantation. A number of clinical trials assessing the safety and efficacy of EVs are 
underway. The substantial developments in engineered Good Manufacture Practices-
grade EVs hold promise for novel EV-therapeutics in transplantation and beyond.
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INTRODUCTION
The adaptive immune response to an allograft is initiated upon activation of T 
lymphocytes recognising donor major histocompatibility (MHC) antigens principally 
via two distinct mechanisms which can occur concurrently but differ in the origin of 
antigen presenting cell (APC) and in their contribution to the alloresponse over time 
(Figure 1). The first of these, direct allorecognition, occurs without the need for antigen 
processing by APCs, and involves the interaction of recipient T cells with intact 
allogeneic MHC-peptide complexes (pMHC) displayed on the surface of transplanted 
cells. It has been widely accepted, until recently, that ‘passenger leukocytes’, dendritic 
cells (DCs) in particular, transported within transplanted tissues and trafficking to 
recipient secondary lymphoid organs (SLOs) are primarily responsible for triggering 
the recipient immune response via the direct pathway[1]. The second, indirect 
allorecognition, occurs upon recipient T cell recognition of processed donor peptides 
presented by recipient antigen presenting cells. Given that thymic selection of T cells is 
not directed either in favour or against any given non-self MHC, the frequency of T 
cells recognising intact allogeneic MHC can be as high as 10% of the total population 
and so the direct pathway is considered the driving force behind acute allograft 
rejection[2,3]. In contrast, the frequency of T cells exhibiting alloreactivity to any given 
allopeptide which is processed and subsequently presented by APCs is low (< 
1/100000) and so, though this indirect pathway is less likely to be pivotal in acute 
rejection, there is circumstantial evidence of its role in governing alloantibody 
production and chronic rejection[4].

Recent studies have called into question the centrality of passenger leukocytes in the 
generation of the direct alloresponse following transplantation. Mounting data from 
both vascularised and non-vascularised animal models demonstrate that in the early 
post-transplant period few if any such cells are found in SLOs[5,6]. Rather, within hours 
of transplantation, a far greater number of recipient APCs carry intact allogeneic MHC 
on their surface capable of being presented directly, without further antigen 
processing, to cognate T cells. As we will show, recent work demonstrates that the 
presence of donor MHC on host-APCs is in large part attributable to extracellular 
vesicles (EVs) released by the allograft. Here, we review current understanding of the 
role of EVs in the transfer of donor MHC following transplantation, and we assess the 
impact on graft rejection and tolerance. Drawing on this, we go on to consider the 
potential of EVs as therapeutic vehicles in transplantation with reference to the 
significant progress afoot in this area of novel biotherapeutics.

EV-mediated MHC transfer and its impact on alloresponses
Most cells, including graft parenchymal, endothelial, and immune cells, release 
nanosized particles delimited by a lipid bilayer membrane which have come to be 
known collectively as EVs. Owing to their small size, durability, and capacity to 
transport a variety of biomolecules, EVs function as important mediators of 
intercellular communication, across a spectrum of tissues and biofluids. EV subtypes, 
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Figure 1 Extracellular vesicle biogenesis and composition. Exosomes are generated by inward budding of endosomal membrane which result in the 
formation of intra-luminal vesicles (ILVs) within multivesicular bodies (MVB). ILVs are released from MVBs as exosomes upon MVB fusion with the plasma 
membrane. Exosomes are smaller and more uniform in size in comparison to microvesicles, which form by directly pinching-off from the plasma membrane. The 
molecular composition of extracellular vesicles, which includes nucleic acids, proteins, and lipids, is dependent on their particular mode of biogenesis in addition to 
their parental cell of origin and its activation state. MHC: Major histocompatibility; PDL1: Programmed Death-Ligand 1; TGF: Transforming growth factor; CTLA4: 
Cytotoxic lymphocyte antigen 4; MVB: Multivesicular bodies; IL: Interleukin.

have been categorised variably according to their particular mode of biogenesis, size, 
morphological characteristics, and/or cell of origin. With the expansion of tools and 
assays for their isolation, characterisation, and functional assessment, their 
classification and nomenclature continues to evolve[7-9]. Exosomes are the smallest of 
described EV subtype, with a diameter of 30-150 nm, and are formed within the 
lumens of multivesicular bodies (MVBs). The mechanisms responsible for their 
formation are now well understood and involve the Endosomal Sorting Complex 
Required for Transport (ESCRT), as well as ESCRT-independent mechanisms such as 
the tetraspanin family of proteins. The precise complement of these and other proteins 
likely affects the final composition of released exosomes (Figure 1). Microvesicles are 
larger, between 100-1000 nm in diameter, and form by pinching off directly from the 
plasma membrane. This outward budding is heavily dependent on the molecular 
composition of the plasma membrane. Apoptotic bodies, which tend to be larger still 
(up to 2000 nm in diameter), are also formed directly from the plasma membrane, 
however this occurs specifically at the time of apoptosis of the parental cell. 
Differences in their mode of biogenesis govern to a certain extent the size, cargo 
repertoire, and morphological features of EV subtypes. The repertoire of cargo of 
microvesicles is thought to reflect the parental cell of origin more closely than 
exosomes which undergo more selective enrichment. Though exosome and 
microvesicle biogenesis occurs at distinct sites within the cell and by different modes, 
in broad terms there is substantial overlap in the sorting machineries involved as well 
as in basic morphologic features such as their size and buoyant density. This can make 
isolation and distinction between them technically challenging[10-13]. In recent years, 
‘omics’ analyses have revealed the diversity of the molecular composition of different 
EV subsets, of EVs released by different cells, and indeed of EVs release by single cells 
exposed to different environmental stimuli. Thus, the extensive repertoire of EV 
proteins, nucleic acids, and lipids is as much a reflection of the parental cell and its 
particular activation state as it is of the particular mode of EV biogenesis[14].
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The exchange of molecules such as antigens and surface immunoglobulins between 
immune cells was first observed over four decades ago and, following this, the transfer 
of MHC complexes between leukocytes was described in 1974[15]. In the early 2000s, the 
acquisition of intact donor-derived allogeneic MHC by recipient APCs, DCs in 
particular, was described in the context of transplantation[16,17]. These ‘cross-dressed’ 
APCs, i.e. those host APCs noted to have acquired allogeneic MHC, were 
demonstrated to have the capacity to activate alloreactive T cells in vitro as well as in 
vivo, in what represented a novel, third pathway for alloantigen presentation which 
came to be known as the semi-direct pathway (Figure 2). Cross-dressing was at first 
understood to be dependent on cell-cell contact, occurring by a process of cell nibbling 
or trogocytosis. In pivotal work from groups including that of Raposo, it was however 
noted that among their surface protein cargo, EVs also carry intact MHC class I and 
class II as well as pMHC[18]. Though it was later established that this conferred to EVs 
the capacity to activate T cells directly, two seminal studies from 2016 also 
demonstrated EVs to be responsible for the transfer of intact allogeneic pMHC from 
the allograft to recipient APCs, and laid bare the biological relevance of this mode of 
cross-dressing in the generation of alloresponses[5,6].

In first of these studies, Benichou and colleagues revisited the passenger leukocyte 
hypothesis in skin-grafted mice. Using highly sensitive cytometric, microscopic, and 
genotypic approaches, they confirmed the absence of donor leukocytes in recipient 
SLOs[6]. Considering that it typically takes 5 d or more for the neolymphangiogenesis 
required for passenger leukocyte trafficking to occur, the authors argue that it would 
be counterintuitive to expect this to be the mechanism responsible for the triggering of 
T cell alloresponses–often detectable within 48 h of transplantation. Rather than 
finding donor MHC present on passenger leukocytes, what the group observed upon 
examining recipient SLOs were large numbers of host APCs cross-dressed with donor 
MHC molecules. Using advanced imaging flow cytometry, a technique which permits 
the microscopic visualisation of fluorescently labelled flow-sorted single cells 
(Figure 3), the group were also able to determine that trafficking EVs were the likely 
source of graft-derived donor MHC. In the second of these reports from the same year, 
using a murine model of cardiac transplantation, Morelli and colleagues corroborated 
the paucity of passenger leukocytes in the period after transplantation, but also went a 
step further in affirming the ultra-structural mechanism of MHC transfer through their 
use of immuno-electron microscopy. This clearly demonstrated the way in which 
recipient APCs acquire donor MHC by capturing clusters of EVs bearing the 
characteristic marker CD63[5].

Having confirmed the route of allo-pMHC transfer to recipient SLOs, the 
researchers went on to demonstrate the centrality of cross-dressed APCs in initiating 
the alloresponses leading to acute allograft rejection. Flow-sorted conventional DCs 
cross-dressed by donor EVs were isolated and shown to be capable of the semi-direct 
priming of alloreactive CD8 T cells, as well as the indirect activation of naïve CD4 T 
cells in vitro (mixed lymphocyte reactions) and in vivo in mice[5]. These observations are 
in keeping with the ‘three-cell’ model proposed by Lechler and colleagues in 2004[16]. 
Adaptive CD8 T cell immunity is the principle arm of the cellular alloimmune 
response, but its development requires help. This can be provided by CD4 T cells that 
recognise alloantigen indirectly. According to the three-cell model, cross-dressed APC 
can indirectly prime an allospecific CD4 T cell which in turn can provide help for the 
semi-direct activation of CD8 T cells by the same APC (Figure 4A)[1,16]. Corroboration 
of the salience of crossed-dressed APCs as the main initiators of direct T cell 
allorecognition was provided when in vivo depletion of recipient DCs was shown to 
dramatically reduce alloreactive T cell priming and to delay acute rejection in murine 
heart transplantation[5,19]. Similarly, in skin-grafted mice, Smyth and colleagues show 
the acquisition of MHC by DCs to be the main source of alloantigen driving cytotoxic 
responses and alloimmunity[20].

Taken together, these studies in experimental animal models of vascularised and 
non-vascularised solid organ transplantation support the view that the release of EVs 
bearing donor MHC and its subsequent presentation by cross-dressed APCs triggers 
the T-cell alloresponses involved in acute rejection.

EV-mediated MHC transfer in clinical transplantation
The pursuit of non-invasive biomarkers of allograft rejection led to the investigation of 
EVs from a range of biofluids, employing bulk analyses of their varied cargo, and 
yielding markers of varying specificity, sensitivity, and utility[21-23]. More recently, in 
order to achieve allograft-specificity, a number of researchers have turned to 
investigate EVs bearing donor-human lymphocyte antigen (HLA) in particular as 
biomarkers of allograft function. In 2016, Gunasekaran and colleagues demonstrated 



Mastoridis S et al. EVs in liver transplantation

WJT https://www.wjgnet.com 334 November 28, 2020 Volume 10 Issue 11

Figure 2 Three pathways of allorecognition. Schematic illustration of the three major pathways of allorecognition: Direct, indirect, and semidirect. In the direct 
pathway, intact non-self major histocompatibility (MHC) Class I and Class II on donor antigen-presenting cells (APCs) activates CD8 and CD4 T cells respectively. In 
indirect recognition, recipient APCs present processed donor allogeneic peptides in the context of self-MHC to recipient T cells. In the semidirect pathway, recipient 
APCs are cross-dressed with donor MHC, acquired from donor-origin extracellular vesicles for instance, which upon encounter activates recipient T cells. Created 
with BioRender.com. APC: Antigen-presenting cell; MHC: Major histocompatibility; EV: Extracellular vesicle.

the presence of donor-derived EVs bearing donor HLA in the serum of two transplant 
recipients undergoing bronchiolitis obliterans syndrome; however, their presence was 
neither reported nor discussed among the control or acute rejection cohorts studied[24]. 
The following year, Kim et al[25] investigated the presence of donor-specific EVs bearing 
donor HLA in a single patient having undergone hand-transplantation[25]. Their data 
suggested that donor-EVs increased in the serum with worsening clinical rejection. 
However, this study was significantly limited in its small sample size, the lack of a 
control group, and its reliance on conventional flow cytometry–a method known to be 
incapable of detecting EVs less than 200 nm in size, which make up the bulk of EVs. In 
the same year, Vallabhajosyula and colleagues provided the first comprehensive 
demonstration of circulating EVs bearing donor HLA in patients having undergone 
islet transplantation[26]. Allograft-specific EVs bearing donor HLA class I were noted 
among all of the 5 study participants analysed at a single post-operative time-point. 
Though the impact of rejection on donor-derived EVs was demonstrated by the group 
in a murine model of islet transplantation, such analyses were not undertaken in their 
clinical cohort. EV characterisation was performed using nanoparticle tracking 
analysis (NTA) by NanoSight which, whilst enabling small EV detection well below 
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Figure 3 Advanced imaging flow cytometry by ImageStreamx. Analysis by ImageStreamx (ISx) enables the accurate detection of particles of diameter as 
low as 20 nm, including small extracellular vesicles. Furthermore, the combination of microscopic imaging with fluorescence detection enables the morphometric and 
photometric assessment of whole cells. This is of particular utility in assessing major histocompatibility cross-dressing. Representative images acquired by ISx of 
three recipient cells [bearing recipient human lymphocyte antigen (HLA), red] cross-dressed with donor-HLA (yellow) following liver transplantation. The discrete foci 
of donor alloantigen point to the vesicular nature of transfer.

the limits of cFCM, achieves only semi-quantitative enumeration of donor-HLA EVs.
These studies, which are among the first attempts to characterise circulating donor-

specific EVs, demonstrate the major challenge in the field to find sensitive and robust 
technological platforms by which to study EVs on a vesicle-by-vesicle basis. This is 
particularly true for small EVs (sEVs) including exosomes and smaller microvesicles 
which are less than 200 nm in diameter. Techniques which permit sEV visualization, 
such as electron microscopy or atomic force microscopy, preclude the analysis of sEVs 
in large numbers and, in so doing, limit robust statistical assessments. Western 
blotting, lipidomics, proteomics, and flow cytometry of bead-captured vesicles are 
useful methods in the analysis of bulk isolates but are unable to distinguish variations 
in the number of vesicles from changes in molecular composition, and are incapable of 
multiparametric analysis of single sEVs[27]. Pioneering work, in particular by groups 
such as that of Lannigan and Erdbrügger, established the potential of imaging flow 
cytometry (iFCM) using ImageStreamx (ISx) (EMD Millipore) in the characterisation of 
sEVs. ISx has all the advantages of traditional flow cytometry, including high-
throughput and multiparametric analysis, with the added value of providing a 
microscopic image of individual cells/particles upon which fluorescence can be 
overlayed (Figure 3)[28-31]. This is achieved using spatially registered charged camera 
coupled (CCD) which, unlike photomultiplier tubes found on cFCMs, exhibit the 
larger dynamic range and lower ‘noise’ required for accurate detection of small EVs. 
Furthermore, the advanced ISx fluidics enable the slower flow rates required for the 
avoidance of coincident detection of multiple sEVs.

In 2018, our group demonstrated the use of ISx in the multiparametric analysis of 
circulating small EV subtypes, including exosomes[27]. Furthermore, we set out to 
explore the utility of the approach in the detection and characterisation of circulating 
tissue/organ-specific sEVs. The EVs of 3 Liver allograft recipients’ circulating EVs 
were labelled with a pan-EV marker, a bona fide marker of exosomes (CD63), and 
probes for donor and recipient HLA. Donor-specific allograft-derived sEVs were 
confirmed to be detectable in circulation after liver transplantation. Further 
multiparametric analyses were employed to interrogate gated donor-sEVs for co-
stimulatory/inhibitory molecules, thereby providing additional support for the 
application’s potential for characterisation and functional insights. In a study from 
2020, we applied this approach to the detection of allograft-derived EVs in a larger 
cohort of liver or kidney transplant recipients[32]. Analyses of circulating cross-dressed 
cells and passenger leukocytes were also performed. We showed, for the first time, 
that cross-dressed recipient leukocytes can be found in the circulation following liver 
transplantation and that their numbers far exceed those of passenger leukocytes in 
keeping with the experimental animal models. The presence of circulating cross-
dressed cells coincided with a rise in circulating allograft-derived sEVs in the early 
post-transplant period. This was a transient phenomenon, with numbers of both 
circulating donor-sEVs and cross-dressed cells rapidly waning and becoming 
undetectable by day 30 post-transplant. We speculate that, as shown in murine 
models, following clinical organ transplantation recipient APC cross-dressing 
continues to occur in the allograft and/or secondary lymphoid tissues for prolonged 
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Figure 4 Three-cell model of semi-direct allorecognition. A: Adaptive CD8 T cell immunity is the principle arm of the cellular alloimmune response, but its 
development requires help. This can be provided by CD4 T cells that recognise alloantigen indirectly. Extracellular vesicle (EV) cross-dressing of recipient antigen-
presenting cells (APCs) can precipitate the simultaneous presentation of intact donor peptide-major histocompatibility complex (pMHC) and of processed alloantigen 
on self-MHC. The resultant cooperation that can occur between CD4 T cells and CD8 effector cells enables delivery of the essential help for generating the cytotoxic 
alloresponses forming the basis for allograft rejection; B: Under certain conditions, within the hepatic microenvironment for instance, it is possible that similar co-
presentation of EV-derived alloantigen can promote CD4 regulatory T cell (Treg) suppression of effector T cells and promotion of tolerance (upper panel). Tolerance 
to alloantigen may also occur as a consequence of EV co-transport of nucleic acids triggering recipient APCs to upregulate immunoinhibitory molecules such as 
Programmed Death-Ligand 1 (middle panel), or indeed due to the tandem transfer of such intact immunoinhibitory molecules which then colocalise at the 
immunological synapse (lower panel). Created with BioRender.com. PD-L1: Programmed Death-Ligand 1; EV: Extracellular vesicle; APC: Antigen presenting cell; 
pMHC: Peptide-major histocompatibility complex.

periods of time, and detection in circulation wanes[5,6,20,26,33]. For obvious reasons, 
corroboration of this in clinical contexts presents a challenge given limited availability 
of such tissues to perform detailed cross-dressing analyses upon. Employing in vitro 
functional analyses using human cells, we determined that DCs which had undergone 
EV-mediate MHC cross-dressing acquired the capacity to elicit the proliferation of 
syngeneic CD8 T cells.

In summary, developments in EV analytic approaches have, in recent years, enabled 
the description of the kinetics of donor-specific allograft-derived EV release following 
clinical transplantation, and evidenced the capacity for these to cross-dress recipient 
APCs through the transfer of donor MHC. Given the pre-eminence of cross-dressed 
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cells in experimental and clinical transplantation and bearing in mind the recognised 
impact of these on alloresponse generation, it is likely important these pathways be 
considered when designing tolerance-promoting protocols.

The role of EVs and cross-dressing in liver transplant tolerance
In models of transplantation cross-dressing of APCs with allo-MHC is a highly 
immunogenic phenomenon. Several factors can govern the nature and magnitude of 
the immune response induced by any given antigen. The dose, the proximity of other 
signals, and the state of the presenting cell are among just a few factors which might 
influence whether the response is directed towards immunity or tolerance. The same 
might be expected of a given alloantigen transported upon EVs. Whether the 
alloresponse is directed towards rejection or tolerance might therefore depend on the 
quantity of EVs released from a given organ, cell of origin, vesicle subtype, other co-
transported EV cargo, the state of the APC which acquires it, and the wider context 
within which the APC presents the antigen. One related consideration is the site at 
which cross-dressing occurs. While cross-dressed APCs have principally been 
observed within SLOs, cross-dressing has also been described within allografts 
themselves. Thus, in rodent models of islet and kidney transplantation, engagement of 
effector T cells with cross-dressed graft-infiltrating recipient DCs preceded rejection[34]. 
However, in a mouse model of spontaneous tolerance following MHC-mismatched 
liver transplantation, recipient DCs cross-dressed with donor EVs markedly 
suppressed host alloreactive responses[33]. In this model, crossed-dressed DCs 
constituted approximately 60% of the intrahepatic DC population, expressed high 
levels of Programmed Death-Ligand 1 (PD-L1), and induced an exhausted phenotype 
among donor-reactive CD8 T cells.

These studies also highlight the potential for different organs to produce 
qualitatively different EVs. The PD-1: PD-L1 axis has emerged as a critical inhibitory 
signalling pathway involved in the regulation of T cell responses and in the 
maintenance of peripheral tolerance[35]. PD-L1 is particularly highly expressed among 
liver parenchymal and non-parenchymal cells. It contributes to local protolerogenic 
pathways essential to the liver-which is seated at the crossroads between the portal 
venous system and the systemic circulation-to prevent the induction of immunity 
against innocuous antigens such as intestinal bacterial degradation products and 
neoantigens arising from metabolic processing[36]. Intrahepatic PD-L1 expression is 
upregulated following liver transplantation in both mice and humans and has been 
implicated in the establishment of liver allograft tolerance via inhibition of alloreactive 
T cell activation and induction of regulatory cell subtypes[33,37,38]. In our analysis of 
circulating sEVs following clinical liver transplantation, but not kidney 
transplantation, we observed that donor-derived sEVs carried significantly more PD-
L1 than did sEVs of recipient origin. Furthermore, recipient cells which became cross-
dressed also exhibited higher levels of PD-L1 than did recipient cells which had not 
been cross-dressed. PD-L1 was noted to co-localise on the APC surface with donor-
HLA, which would be in support of their tandem transport on EVs though other 
groups have reported global upregulation of PD-L1 (potentially due to EV-miRNA 
transfer) following cross-dressing[39].

Work from the Burlingham laboratory expands further on the tolerogenic potential 
of EVs via the upregulation of PD-L1 on DCs. Their work focuses primarily on 
maternal microchimerism, whereby a tiny population of immune cells are transferred 
from mother to offspring during pregnancy and breastfeeding and result in the 
persistent detection of maternal cells throughout adult life[40]. These maternal cells 
contribute to the induction and maintenance of tolerance against non-inherited 
maternal antigens (NIMAs) which they bear, including MHC. For example, kidney 
grafts expressing NIMA-MHC will exhibit longer survival than grafts expressing 
unrelated MHC. The group demonstrate that the effects of such a small population of 
maternal cells are mediated and amplified by their avid production of EVs bearing 
NIMAs which subsequently are taken up by host DCs. The resultant cross-dressed 
DCs are noted to globally upregulate PD-L1, which the researchers suggest is due to 
co-transported EV-miRNA, and in doing so inducing NIMA-specific T cell anergy[39,40]. 
This is of added relevance to our discussion since the establishment of donor 
chimerism following liver transplantation in particular has long been recognised. 
Though its beneficial effects on outcome are widely acknowledged, the mechanisms 
underlying the pro-tolerogenic effect have remained uncertain[41,42].

It would appear then, that under certain circumstances allo-EVs promote tolerance 
while in others they drive rejection. The three-cell model described above offers a 
mechanistic framework by which to understand this apparent dichotomy. While allo-
MHC transferred intact to an APC will activate CD8 effector T cells via the semi-direct 
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pathway, the fate of processed peptides presented indirectly by the same APCs can 
result in the recruitment either of CD4 cells which will assist in the activation of the 
effector cell and drive rejection (Figure 4A), or of CD4 regulatory T cells (Tregs) which 
will inhibit effector cell activation and so promote tolerance (Figure 4B, upper 
panel)[43]. Proponents of this model would hold that the propensity towards Treg 
associations is determined by, for instance, the wider setting in which APC cross-
dressing has occurred. In the liver, where there is high expression of molecules such as 
PD-L1 and anti-inflammatory cytokines such as interleukin (IL)-10, one might expect 
Treg recruitment to be more likely.

An alternative is that particular EVs are enriched in cargo capable, once transported 
to APCs, of contributing to the inhibition of T cells. As discussed, this could take the 
form of intact molecules transported in tandem or of nucleic acids which induce 
expression of regulatory molecules in recipient cells. Thus, Burlingham et. al. outline a 
scenario in which certain EVs (they suggest of maternal cell or of liver allograft origin) 
induce global PD-L1 expression in APCs via the co-transfer of miRNAs. This PD-L1 
induces anergy of indirect pathway CD4 T cells, which then fail to help direct pathway 
CD8 T cells (Figure 4B, middle panel)[39]. In our analyses, we demonstrated that EVs 
derived from liver transplant recipients were able to transiently inhibit CD8 effector 
responses following uptake by DCs. Given that we observed allograft-derived EVs to 
be particularly enriched in PD-L1, and PD-L1 to colocalise with allo-MHC on the 
cross-dressed APC, it could be the case that effector cell inhibition was due to the 
proximity of intact, co-transported inhibitory signalling (Figure 4B, lower panel)[32]. 
These are not, it must be emphasized, mutually exclusive scenarios, and future work 
should delineate the contribution of both. An understanding of the factors that can tip 
the balance toward tolerance will likely be critical in the advancement of EV-based 
immunotherapeutics.

EVs as novel therapeutics in transplantation
By virtue of their varied bioactive cargo, stability, capacity for tissue-specific targeting, 
ability to cross biological barriers, and safety profile, EVs have been identified as 
having significant therapeutic potential. There are currently over ten clinical trials in 
progress assessing the efficacy and safety of EV therapies[44]. Therapeutic EVs can 
broadly be subdivided into those derived from unmodified cellular subsets, and those 
which have been bioengineered.

Unmodified cell-derived EVs
EV-based therapeutics have, for the most part, turned to the utilisation of EVs derived 
from stem cell and regulatory cell subsets. Mesenchymal stem cells (MSCs) are among 
the earliest and most widely employed examples. MSCs were at first believed to 
mediate protective properties via their capacity to differentiate into and to replace 
injured tissue. For instance, following cardiac injury, delivered MSCs were understood 
to ameliorate damage by differentiate into healthy myocardium. However, it has 
recently been noted that the effects of MSCs are in large part due to their paracrine 
effects on surrounding tissues which, in part, are mediated by secreted EVs[45-48]. Since 
this discovery, the capacity for MSC-EVs to attenuate inflammation and to promote 
tissue regeneration has been demonstrated in pre-clinical models of respiratory, 
pancreatic, renal, musculoskeletal, neurological, and of liver diseases (reviewed 
elsewhere[49,50]). The use of MSC-EVs as an alternative to MSCs confers a number of 
potential advantages including the ability to cross biological barriers, target-specificity, 
avoidance of entrapment in microvascular beds, stability in storage, reduced potential 
for phenotypic alteration upon delivery, relatively lower immunogenicity and 
tumorigenicity, and improved safety profiles on repeated dosing.

Several experimental studies have demonstrated MSC-EVs to play a therapeutic role 
in liver ischaemia-reperfusion injury (IRI) through regenerative, autophagic, and 
immunomodulatory processes[51-54]. These rodent models employ variations of in vivo, 
in situ, vascular occlusion to replicate IRI. It remains to be seen what the impact of 
such therapies would be on the prolongation of allograft survival in models of liver 
transplantation. In the clinical context, ex-vivo machine perfusion of organs prior to 
transplantation under either normothermic (NMP) or hypothermic (HMP) conditions 
has improved assessment of organ viability, enabled the reconditioning of organs 
which might otherwise have been discarded, but also provided a platform upon which 
novel therapeutics can be developed and trialled. Very few studies have investigated 
the application of EVs in this context; though interest is growing rapidly. While 
studies have demonstrated beneficial effects of MSC-EVs in rodent models of lung and 
kidney perfusion, the first such demonstration in liver was by Rigo and colleagues in 
2018[55-57]. Using a murine model of ex-vivo NMP, the group demonstrated the 
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favourable outcomes in organs treated with human liver stem cell-derived EVs (HLSC-
EVs), in terms of a reduction in histological damage and of enzyme markers of 
cytolysis. Several limitations are inherent in these studies including not performing 
onward transplantation to determine the effects on allograft outcomes, providing little 
mechanistic evidence of the mode by which EVs exert their effect or whether EVs of 
alternative origin would differ, and the lack of comprehensive uptake and dose-
response analyses. Further investigation is warranted in experimental animal models, 
but it is also anticipated that trials will arise in perfused human organs with onward 
progression into phase I/II studies[58].

In addition to stem cell derived EVs, it is important to also mention Treg-derived 
EVs. Progress has been made in the implementation of adoptive Treg cell therapy in a 
number of scenarios which include type 1 diabetes, rheumatoid arthritis, inflammatory 
bowel disease, graft-versus-host disease (GvHD) following bone marrow 
transplantation (BMT), and organ transplant rejection[59,60]. Similar to MSCs, 
considerable barriers have been faced in the ex-vivo expansion of Treg, in maintaining 
their phenotypic characteristics once delivered, in delivering sufficient numbers 
particularly in the context of concomitant immunosuppressive therapies, in their 
oncogenic potential, and in their immunogenicity[61]. In their seminal paper, Okoye and 
colleagues showed Tregs to release large quantities of EVs carrying a distinct cargo of 
miRNA, and went on to demonstrate that blocking the release of these EVs abrogated 
the Tregs’ ability to suppress Th1 cell proliferation and thereby their immuno-
regulatory capacity[62]. These findings were independently reasserted by Aiello and 
colleagues, who also went on to demonstrate the capacity of Treg-EVs to prolong 
kidney allograft survival in vivo[63]. In recent months, Smyth and colleagues have 
shown the capacity for Treg-EVs to inhibit T effector cell responses, to affect changes 
in effector cell cytokine production via cargo miRNAs, and to protect against rejection 
in a humanised mouse skin transplant model[64].

Studies are lacking which aim specifically to investigate the tolerogenic potential in 
transplantation of therapeutically delivered EVs which serve to mediate APC cross-
dressing. The recent work of Patel et al[65]. serves to demonstrate the potential of such 
an approach. Donor bone marrow derived EVs bearing allo-MHC were delivered in a 
non-human primate model of heart and kidney co-transplantation with prior 
conditioning by thymic irradiation, antithymocyte globulin, and immunosuppression. 
While design and sample size limit interpretations of functional outcomes, their data 
shows that delivered EVs are capable of generating stable cross-dressing. They suggest 
that such EVs might be used in place of whole bone marrow as a tolerance induction 
strategy and perhaps reduce the need for recipient conditioning[65]. We anticipate that 
similar approaches might prove more practicable through the development of 
engineered EVs enriched in specific desired molecules and alloantigens.

Engineered EVs
Broadly, there are two distinct approaches to selective EV cargo loading: (1) 
Exogenous, after EV isolation from the parent cell; and (2) Endogenous, during EV 
biogenesis[66]. Methods to achieve the former include techniques such as 
electroporation and sonication. Methods towards the latter involve exploiting the 
parent cell’s EV sorting machinery. Desired cargo can be directly transfected into the 
parent cell or can be engineered to be stably expressed. Fusion of the therapeutic of 
interest with molecules enriched in EVs will optimise its loading onto them. While 
examples of engineering approaches to endogenous EV loading and optimisation of 
delivery have been comprehensively outlined elsewhere[44], one particularly elegant 
example is that from Sutaria and colleagues who achieved the 65-fold increase of 
miRNA-199a-3p by associating its production to Lamp2a within the membrane of EVs 
produced by a HEK293T cell line[67]. Though no applications of engineered EVs have 
been reported in the literature with regards to liver IRI or tolerance induction, their 
recent implementation in diverse inflammatory, autoimmune, and oncological 
conditions, both in experimental models and in limited clinical trials (Table 1), 
demonstrate their potential.

Engineered EVs offer significant advantages over alternative synthetic drug 
delivery systems such as liposomes, nanocapsules, and micelles, which have often 
proven inefficient, poorly targeted, cytotoxic, and/or immunogenic. Nevertheless, 
widespread clinical utilisation of engineered EVs also faces a number of obstacles. 
Among these are: (1) The need for GMP-compliant up-scaling of production and 
isolation processes; (2) The better understanding of uptake kinetics, targeting, 
bioavailability, and dosing; and (3) The selection ofappropriate assays and biomarkers 
for the purpose of monitoring function. The significant progress underway in each of 
these areas has been reviewed elsewhere[44,68-71].
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Table 1 Clinical trials of engineered extracellular vesicle-based therapies

Treatment target Trial 
phase Source of EVs EV manipulation Results

Pancreatic cancer (NCT03608631) Phase I MSC, allogeneic siRNA direct loading Not yet recruiting

Colon cancer[72] Phase I Plant origin Curcumin direct loading Active

Melanoma[73] Phase I Immature DCs, 
autologous

Tumor antigen (peptide) direct 
loading

Safe, well tolerated, mixed 
responses.

Non-small cell lung cancer 
(NCT01159288)

Phase II Mature DCs, autologous Tumor antigen (peptide) direct 
loading

Safe, well tolerated, mixed 
responses.

Non-small cell lung cancer[74] Phase I Immature DCs, 
autologous

Tumor antigen (peptide) direct 
loading

Safe, well tolerated, mixed 
responses.

Malignant ascites (NCT01854866) Phase II Tumor derived Chemotherapeutic agent loading Unknown

Acute ischaemic stroke (NCT03384433) Phase I/II MSCs, allogeneic miRNA loading Completed

EVs: Extracellular vesicles; MSC: Mesenchymal stem cell; DCs: Dendritic cells.

CONCLUSION
EVs have emerged as key contributors to T cell alloimmunity. Progress in the accurate 
identification and analysis of these nano-sized vesicles has confirmed their capacity to 
transport graft-derived alloantigen to recipient APCs in both experimental models of 
transplantation and in the clinical setting. While the consequence can be the initiation 
of strong inflammatory responses leading to acute graft rejection, it is possible in 
certain settings that tolerogenic responses are mediated and allograft injury allayed. 
EVs are emerging as potent therapeutic entities with innate potential for use as 
vehicles for the targeted delivery of small-molecule drugs, nucleic acid species, and 
therapeutic proteins including alloantigen. Improved understanding of their role in 
immune homeostasis, tolerance, and rejection, and optimised methods of production 
make it likely that EVs will serve diverse roles a future platform for biophar-
maceuticals in transplantation and beyond.
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